If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+160x-156=0
a = 4; b = 160; c = -156;
Δ = b2-4ac
Δ = 1602-4·4·(-156)
Δ = 28096
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{28096}=\sqrt{64*439}=\sqrt{64}*\sqrt{439}=8\sqrt{439}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(160)-8\sqrt{439}}{2*4}=\frac{-160-8\sqrt{439}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(160)+8\sqrt{439}}{2*4}=\frac{-160+8\sqrt{439}}{8} $
| 8+50x=12+25x | | (-5)-5x=(-11)-8x | | 4m+2m+2=3m-7 | | 26x-7+10x+7=180 | | 4(w+7)=8w-4 | | |x-3|+2=5 | | -6+x/5=-41 | | (-6x)+4=(-16)-x | | 2h=25h | | 6y-2(y-2)+5=0 | | 18-1/2(2s+18)=-2s-6 | | -5n=n/2 | | -k-4k=15 | | 49-y=7/36y | | 13p+108=285 | | 2.3x-5+3x+8=19.5 | | x2+9=90 | | (-7)-3x=(-4x)-7 | | 36^7=6^x | | 7p+4=29=2p | | 13p=108 | | 1/2(8x+32)=x^2+4x | | 4x-43+3x=10(3x-2) | | 2w+8=6 | | 3x-4=8(x/5-1) | | 49-y=7/36 | | 2x+12=x+14 | | (3x/3x-1)+(2/x)=1 | | 4(2+5x)=2x-28 | | g=3/7=2/7 | | (-9x)+9=(-5)-2x | | 2v=18-7 |